O'REILLY"

Certified Kubernetes

Application Developer
(CKAD) Study Guide

In-Depth Guidance and Practice

Chapter =

Benjamin Muschko

Certified Kubernetes Application
Developer (CKAD) Study Guide

In-Depth Guidance and Practice

This excerpt contains Chapter 2. The complete book is
available on the O’Reilly Online Learning Platform and
through other retailers.

Benjamin Muschko

Bejing - Boston « Farnham - Sebastopol - Tokyo [@YRIIMNY

Certified Kubernetes Application Developer (CKAD) Study Guide
by Benjamin Muschko

Copyright © 2021 Automated Ascent, LLC. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins Indexer: Judy McConville
Development Editor: Michele Cronin Interior Designer: David Futato
Production Editor: Beth Kelly Cover Designer: Karen Montgomery
Copyeditor: Holly Bauer Forsyth lllustrator: Kate Dullea

Proofreader: Justin Billing
February 2021: First Edition

Revision History for the First Edition
2021-02-02: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492083733 for release details.

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. Certified Kubernetes Application Devel-
oper (CKAD) Study Guide, the cover image, and related trade dress are trademarks of O’'Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-492-08373-3
[LSI]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492083733

Table of Contents

R 1 -1 €1]) 3 1
Kubernetes Primitives 1
Using kubectl to Interact with the Kubernetes Cluster 3
Object Management 4

Imperative Approach 4
Declarative Approach 5
Hybrid Approach 5
Which Approach to Use? 5
Other Notable Commands 6
Understanding Pods 7
Containerization Process 7
Container Concepts 7
Example: Containerizing a Java-Based Application 8
Creating Pods 10
Listing Pods 12
Pod Life Cycle Phases 13
Rendering Pod Details 13
Accessing Logs of a Pod 14
Executing a Command in Container 15
Deleting a Pod 15
Configuring Pods 16
Declaring Environment Variables 16
Defining a Command with Arguments 17
Understanding Namespaces 18
Listing Namespaces 19
Creating and Using a Namespace 19
Deleting a Namespace 20

Summary 20

Exam Essentials
Sample Exercises

20
21

iv

| Table of Contents

CHAPTER 2
Core Concepts

By “core concepts,” the CKAD curriculum is referring to Kubernetes’ basic concepts,
its APL, and the commands to operate an application on Kubernetes. In this chapter,
we'll discuss the basic structure of Kubernetes primitives and the main entry point for
interacting with them: the command line-based client, kubect1.

A Pod is the Kubernetes primitive for running an application in a container. We'll
touch on the predominant aspects of a Pod and also briefly discuss Docker, the con-
tainerization technology employed by Kubernetes.

At the end of the chapter, you’ll understand how to create Kubernetes objects impera-
tively and declaratively and know how to create a Pod and define its most basic
configuration.

At a high level, this chapter covers the following concepts:

« Container concepts
o Pod

« Namespace

Kubernetes Primitives

Kubernetes primitives are the basic building blocks anchored in the Kubernetes
architecture for creating and operating an application on the platform. Even as a
beginner to Kubernetes, you might have heard of the terms Pod, Deployment, and
Service, all of which are Kubernetes primitives. There are many more that serve a
dedicated purpose in the Kubernetes architecture.

To draw an analogy, think back to the concepts of object-oriented programming. In
object-oriented programming languages, a class defines the blueprint of a real-world
functionality: its properties and behavior. A Kubernetes primitive is the equivalent of
a class. The instance of a class in object-oriented programming is an object, manag-
ing its own state and having the ability to communicate with other parts of the sys-
tem. Whenever you create a Kubernetes object, you produce such an instance.

For example, a Pod in Kubernetes is the class of which there can be many instances
with their own identity. Every Kubernetes object has a system-generated unique iden-
tifier (also known as UID) to clearly distinguish between the entities of a system.
Later, we’ll have look at the properties of a Kubernetes object. Figure 2-1 illustrates
the relationship between a Kubernetes primitive and an object.

- Primitive
|Frontend| ‘ Backend \ Object

UID: 4ef7b090-37ed-4b33-8fb7-c5693a48eef5 UID: b674f2e0-fObc-40be-af8e-7985442c21a2

Figure 2-1. Kubernetes object identity

Each and every Kubernetes primitive follows a general structure, which you can
observe if you have a deeper look at a manifest of an object, as shown in Figure 2-2.
The primary markup language used for a Kubernetes manifest is YAML.

Kubernetes object YAML manifest
APl Version apiVersion: vi
v, app/vi, ... |,| [kind: Pod
metadata:
Kind creationTimestamp: null
labels:
_Tod Deployment,..] run: nginx
name: nginx
Metadata bl L | spec:
Name, namespace, labels, ... containers:
"""""""""""""""" — image: nginx
Spec N name: nginx
Desired state resources {}
------------------------------ dnsPolicy: ClusterFirst
Status) restartPolicy: Never
Actual state status: {}

Figure 2-2. Kubernetes object structure

2 | Chapter2: Core Concepts

Let’s discuss each section and its relevance within the Kubernetes system:

API version

The Kubernetes API version defines the structure of a primitive and uses it to
validate the correctness of the data. The API version serves a similar purpose as
XML schemas to a XML document or JSON schemas to a JSON document. The
version usually undergoes a maturity process—e.g., from alpha to beta to final.
Sometimes you see different prefixes separated by a slash (e.g., apps). You can list
the API versions compatible with your cluster version by running the command
kubectl api-versions.

Kind
The kind defines the type of primitive—e.g., a Pod or a Service. It ultimately
answers the question, “What type of object are we dealing with here?”

Metadata
Metadata describes higher-level information about the object—e.g., its name,
what namespace it lives in, or whether it defines labels and annotations. This sec-
tion also defines the UID.

Spec
The specification (“spec” for short) declares the desired state—e.g., how should
this object look after it has been created? Which image should run in the con-
tainer, or which environment variables should be set for?

Status
The status describes the actual state of an object. The Kubernetes controllers and
their reconcilliation loops constantly try to transition a Kubernetes object from
the desired state into the actual state. The object has not yet been materialized if
the YAML status shows the value {}.

With this basic structure in mind, let’s have a look at how to create a Kubernetes
object with the help of kubectl.

Using kubectl to Interact with the Kubernetes Cluster

kubectl is the primary tool to interact with the Kubernetes clusters from the com-
mand line. The CKAD exam is exclusively focused on the use of kubectl. Therefore,
it’s paramount to understand its ins and outs and practice its use heavily.

In this section, I want to provide you with a brief overview of its typical usage pattern.
Let’s start by looking at the syntax for running commands first. A kubectl execution
consists of a command, a resource type, a resource name, and optional command line
flags:

$ kubectl [command] [TYPE] [NAME] [flags]

Using kubectl to Interact with the Kubernetes Cluster | 3

The command specifies the operation youre planning to run. Typical commands are
verbs like create, get, describe, or delete. Next, you'll need to provide the resource
type youre working on, either as a full resource type or its short form. For example,
you could work on a service here, or use the short form, svc. The name of the
resource identifies the user-facing object identifier, effectively the value of meta
data.name in the YAML representation. Be aware that the object name is not the
same as the UID. The UID is an autogenerated, Kubernetes-internal object reference
that you usually don't have to interact with. The name of an object has to be unique
across all objects of the same resource type within a namespace. Finally, you can pro-
vide zero to many command line flags to describe additional configuration behavior.
A typical example of a command-line flag is the - -port flag, which exposes a Pod’s
container port.

Figure 2-3 shows a full kubectl command in action.

kubectl [command] [TYPE] [NAME] [flags]
e~ e~ N~ T
get pod app -oyaml

Figure 2-3. Kubectl usage pattern

Over the course of this book, we'll explore the kubectl commands that will make you
the most productive during the CKAD exam. There are many more, however, and
they usually go beyond the ones youd use on a day-to-day basis as an application
developer. Next up, we'll have a deeper look at the create command, the imperative
way to create a Kubernetes object. We'll also compare the imperative object creation
approach with the declarative approach.

Object Management

You can create objects in a Kubernetes cluster in two ways: imperatively or declara-
tively. The following sections will describe each approach, including their benefits,
drawbacks, and use cases.

Imperative Approach

The imperative method for object creation does not require a manifest definition.
You would use the kubectl run or kubectl create command to create an object on
the fly. Any configuration needed at runtime is provided by command-line options.
The benefit of this approach is the fast turnaround time without the need to wrestle
with YAML structures:

$ kubectl run frontend --image=nginx --restart=Never --port=80
pod/frontend created

4 | Chapter2: Core Concepts

Declarative Approach

The declarative approach creates objects from a manifest file (in most cases, a YAML
file) using the kubectl create or kubectl apply command. The benefit of using the
declarative method is reproducibility and improved maintenance, as the file is
checked into version control in most cases. The declarative approach is the recom-
mended way to create objects in production environments:

$ vim pod.yaml

$ kubectl create -f pod.yaml
pod/frontend created

Hybrid Approach

Sometimes, you may want to go with a hybrid approach. You can start by using the
imperative method to produce a manifest file without actually creating an object. You
do so by executing the kubectl run command with the command-line options -o
yaml and --dry-run=client:

$ kubectl run frontend --image=nginx --restart=Never --port=80 \
-0 yaml --dry-run=client > pod.yaml

$ vim pod.yaml

$ kubectl create -f pod.yaml

pod/frontend created

$ kubectl describe pod frontend

Name: frontend
Namespace: default
Priority: 0

Which Approach to Use?

In earlier Kubernetes versions, you were still able to create objects other than Pods
with the kubectl run command. For example, with the right combination of com-
mand line options you could create Deployments and CronJobs, however, kubectl
run rendered a deprecation message to remind you that support for it will go away in
a future version.

Kubernetes 1.18 only allows creating Pods with the run command now. You will have
to use the kubectl create command for imperatively creating any other primitive.
You will find a lot of CKAD preparation material on the web that still uses the
kubectl run pattern. This will not work in the exam environment anymore as the
Kubernetes version has already been upgraded beyond the point of version 1.18.

While creating objects imperatively to optimize the turnaround time, in practice
you’ll most certainly want to rather use the declarative approach. A YAML manifest
file represents the ultimate source of truth of a Kubernetes object. Version-controlled

Object Management | 5

files can be audited, shared and store a history of changes in case you need to revert
to a previous revision.

Other Notable Commands

So far we only talked about object creation with the imperative and declarative
approach using the run and create command. The kubectl executable offers other
notable commands in the realm of object management.

Deleting an object

At any given time, you can delete a Kubernetes object. During the exam, the need
may arise if you made a mistake while solving a problem and want to start from
scratch to ensure a clean slate. In a work environment, you’ll want to delete objects
that are not needed anymore. The delete command offers two options: deleting an
object by providing the name or deleting an object by pointing to the YAML manifest
that created it:

$ kubectl delete pod frontend

pod "frontend" deleted

$ kubectl delete -f pod.yaml
pod "frontend" deleted

Editing a live object

Say you already created an object and you wanted to make further changes to the live
object. You have the option to modify the object in your editor of choice from the
terminal using the edit command. After saving the object definition in the editor,
Kubernetes will try to reflect those changes in the live object:

$ kubectl edit pod frontend

Replacing a live object

Sometimes, you’ll just want to replace the definition of an existing object declara-
tively. The replace command overwrites the live configuration with the one from the
provided YAML manifest. The YAML manifest you feed into the command must be a
complete resource definition as observed with the create command:

$ kubectl replace -f pod.yaml

Updating a live object

Finally, I want to briefly explain the apply command and the main difference to the
create command. The create command instantiates a new object. Trying to execute
the create command for an existing object will produce an error. The apply com-
mand is meant to update an existing object in its entirety or just incrementally. That’s
why the provided YAML manifest may be a full definition of an object or a partial

6 | Chapter2: Core Concepts

definition (e.g., just the number of replicas for a Deployment). Please note that the
apply command behaves like the create command if the object doesn’t exist yet,
however, the YAML manifest will need to contain a full definition of the object:

$ kubectl apply -f pod.yaml

pod/frontend configured
In the next section, we'll put our knowledge in practice by creating and interacting
with Pods.

Understanding Pods

The most important primitive in the Kubernetes API is the Pod. A Pod lets you run a
containerized application. In practice, you’ll often encounter a one to one mapping
between a Pod and a container, however, there are use cases we'll discuss in a later
chapter that benefit from declaring more than one container in a single Pod.

In addition to just running a container, a Pod can consume other services like a per-
sistent storage, configuration data, and much more. Therefore, think of a Pod as a
wrapper for running containers including the mediator functionality with other
Kubernetes objects.

Before jumping deeper into the coverage of a Pod, let’s first explore the role a OCI-
compliant container runtime plays in the Kubernetes ecosystem. We'll use the Docker
daemon as an example of such a container runtime.

Containerization Process

Kubernetes is a container orchestrator that uses a container runtime to instantiate
containers inside of Pods. By default, this container runtime is the Docker. While it is
not strictly necessary to understand Docker as a whole for the exam, you should at
least be familiar with its basics. In this section, we’ll talk about Docker’s foundational
concepts and commands. It is safe to skip this section if you're already familiar with
Docker.

Container Concepts

A container packages an application into a single unit of software including its run-
time environment and configuration. This unit of software usually includes the oper-
ating system, the application’s source code or the binary, its dependencies and other
system tools deemed necessary. The declared goal of a container is to decouple the
runtime environment from the application to avoid the “works on my machine”
problem.

The process of bundling an application into a container is commonly referred to as
containerization. Containerization works based on instructions defined in a so-called

Containerization Process | 7

Dockerfile. The Dockerfile explicitly spells out what needs to happen when the soft-
ware is built. The result of the operation is an image. The image is usually published
to a registry for consumption by other stakeholders. Docker Hub is the primary regis-
try for Docker images available for public use. Other public registries like GCR and
Quay are available. Figure 2-4 illustrates the concepts in the context of containerizing
an application.

Blueprints of Materialized _ Storageand
instructions Create| SOftwarebinary . distribution facility

()

Instantiate
1 1

A 4

v v
[Container} [Container] [Container]
Runtime instances

Figure 2-4. Containerization process

To summarize, the Dockerfile is a blueprint of how the software should be built, the
image is the artifact produced by the process, and the container is an running
instance of the image serving the application. Lets have a look at a more concrete
example.

Example: Containerizing a Java-Based Application

Let’s assume wed want to containerize a web application written in Java. The applica-
tion doesn’t write core functionality from scratch but uses the Spring Boot framework
as an external library. In addition, we’ll want to control the runtime behavior with the
help of environment variables. For example, you may want to provide URLs and cre-
dentials to connect to other services like a database. We'll talk through the process
step by step and execute the relevant Docker commands from the terminal. If you
want to follow along, you can download a sample application from the project gener-
ator Spring Initalizr.

Before we can create the image, we'll have to write a Dockerfile. The Dockerfile can
reside in any directory and is essentially a plain-text file. The instructions below use
the OpenJDK distribution of Java 11 as the base image. A base image contains the
operating system and the necessary tooling, in this case Java. Moreover, we include
the binary file, an executable Java archive (JAR), into the directory /app of the image.
Finally, we define the Java command that executes the program and expose the port
8080 to make the application accessible when run in a container. Example 2-1 out-
lines a sample Dockerfile.

8 | Chapter2: Core Concepts

https://hub.docker.com
https://oreil.ly/Na9Vb
https://oreil.ly/bXSA4

Example 2-1. Dockerfle for building a Java application

FROM openjdk:11-jre-slim

WORKDIR /app

COPY target/java-hello-world-0.0.1.jar java-hello-world.jar
ENTRYPOINT ["java", "-jar", "/app/java-hello-world.jar"]
EXPOSE 8080

With the Dockerfile in place, we can go ahead and create the image. The following
command provides the name of the image and the tag. The last argument points to
the context directory. A context directory contains the Dockerfile as well as any direc-
tories and files that are supposed to be included in the image. Here, the context direc-
tory is the current directory we reside in referenced by “.”:

$ docker build -t java-hello-world:1.0.0 .
Sending build context to Docker daemon 8.32MB
Step 1/5 : FROM openjdk:11-jre-slim
---> 973c18dbf567
Step 2/5 : WORKDIR /app
---> Using cache
---> 31f9c5f2a019
Step 3/5 : COPY target/java-hello-world-0.0.1.jar java-hello-world.jar
---> Using cache
---> 6aldeeel7e9d
Step 4/5 : ENTRYPOINT ["java", "-jar", "/app/java-hello-world.jar"]
---> Using cache
---> 52391ca70d86
Step 5/5 : EXPOSE 8080
---> Using cache
---> 3e9c22451a17
Successfully built 3e9c22451a17
Successfully tagged java-hello-world:1.0.0

As indicated by the terminal output, the image has been created. You might have
noticed that the base image has been downloaded as part of the process. Both images
can be found in your local Docker Engine environment by running the following
command:

$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
java-hello-world 1.0.0 3e9c22451a17 About a minute ago 213MB
openjdk 11-jre-slim 973c18dbf567 20 hours ago 204MB

It’s time to run the application in a container. The run command points to an image
and executes its logic in a container:

$ docker run -d -p 8080:8080 java-hello-world:1.0.0
bOee®4accf078ea7c73cfe3be0f9d1ac6a099ac4ee903773bc6bf6258acbb66

We told the command to forward the port 8080 accessible on localhost to the con-
tainer port 8080. This means we should now be able to resolve the application’s

Containerization Process | 9

endpoint from the local machine. As you can see in the following command, a simple
curl to the root context path renders the message “Hello World!”:

$ curl localhost:8080
Hello World!

To publish an image to a registry, you'll potentially have to do some prework. Most
registries require you to provide a prefix that signifies the username or hostname as
part of the image name. For example, Docker Hub requires you to provide the user-
name. My username is bmuschko and therefore I have to retag my image before push-
ing it. If the registry is protected, you'll also have to provide the credentials. For
Docker Hub, we are logging in with username:

$ docker login --username=bmuschko

Password: *x*%*

WARNING! Your password will be stored unencrypted in /Users/bmuschko/
.docker/config.json.

Configure a credential helper to remove this warning. See
https://docs.docker.com/engine/reference/commandline/login/#credentials-store

Login Succeeded

$ docker tag java-hello-world:1.0.0 bmuschko/java-hello-world:1.0.0
$ docker push bmuschko/java-hello-world:1.0.0

The push refers to repository [docker.io/bmuschko/java-hello-world]
be6f48684f94: Pushed

ff3b0a3f736e: Pushed

a346421f0657: Mounted from library/openjdk

cab8f1f311d9: Mounted from library/openjdk

0a71386e5425: Mounted from library/openjdk

ffc9b21953f4: Mounted from library/openjdk

1.0.0: digest: sha256:aafd2ab53ba3ff66fe66d7ffc118c7a8ea993472132d1bdf417a \
62e212f3dcfd size: 1578

You experienced one of the most common developer workflows: containerizing an
application and pushing the image to a registry. There’s far more to learn about
Docker, but that is outside the scope of this book and we won’t dive any deeper here.
Refer to the Docker documentation for more information.

Creating Pods

In this chapter, we will only look at the creation of a Pod running a single container.
Jump right over to Chapter 4, if you want to learn more about Pods that run more
than one container. That chapter explains applicable design patterns and how to
interact with individual containers using kubectT.

The Pod definition needs to state an image for every container. Upon creating the
Pod object, imperatively or declaratively, the container runtime engine (CRI) will
check if the container image already exists locally. If the image doesn’t exist yet, the
CRI will download it from a container image registry. By default the registry is

10 | Chapter2: Core Concepts

https://docs.docker.com

Docker Hub. As soon as the image exists on the node, the container is instantiated
and run. Figure 2-5 demonstrates the execution flow on a high-level.

Remote container

image registry

Download image
Container Pod Pod

runtime . . .
S [Con’flner) [Con’flner] (Con’flner]

Local node

container image -
registry 8 Use image(s)

Figure 2-5. CRI interaction with Docker images

The run command is the central entry point for creating Pods imperatively. Let’s talk
about its usage and the most important command line options you should memorize
and practice. Say you wanted to run a Hazelcast instance inside of a Pod. The con-
tainer should use the latest Hazelcast image, expose port 5701, and define an environ-
ment variable. In addition, we’ll also want to assign two labels to the Pod. The
following command combines of this information and does not require any further
editing of the live object:

$ kubectl run hazelcast --image=hazelcast/hazelcast --restart=Never \
--port=5701 --env="DNS_DOMAIN=cluster" --labels="app=hazelcast,env=prod"
The run command offers a wealth of command line options. Execute the kubectl
run --help or refer to the Kubernetes documentation for a broad overview. For the
CKAD exam, you'll not need to understand each and every command. Table 2-1 lists
the most commonly-used options.

Table 2-1. Important kubectl run command line options

Option Example value Description

--image nginx The image for the container to run.

--port 8080 The port that this container exposes.

--rm - Deletes the Pod after command in the container finishes.
--env PROFILE=dev The environment variables to set in the container.

--labels app=frontend A comma-separated list of labels to apply to the Pod.

Creating Pods | 11

https://hazelcast.com
https://oreil.ly/ChxPI

Some developers are more used to the creation of Pods from a YAML manifest. Prob-
ably you're already accustomed to the declarative approach because you're using it at
work. You can express the same configuration for the Hazelcast Pod by opening the
editor, copying a Pod YAML code snippet from the Kubernetes online documentation
and modifying it to your needs. Example 2-2 shows the Pod manifest saved in the file
pod.yaml.

Example 2-2. Pod YAML manifest

apivVersion: vi1
kind: Pod
metadata:
name: hazelcast
labels:
app: hazelcast
env: prod
spec:
containers:
- env:
- name: DNS_DOMAIN
value: cluster
image: hazelcast/hazelcast
name: hazelcast
ports:
- containerPort: 5701
restartPolicy: Never

Creating the Pod from the manifest is straightforward. Simply use the create or
apply command, as explained in the sections “Object Management” and “Other
Notable Commands”:

$ kubectl create -f pod.yaml
pod/hazelcast created

Listing Pods

Now that you created a Pod, you can further inspect its runtime information. The
kubectl command offers a command for listing all Pods running in the cluster: get
pods. The following command renders the Pod named hazelcast:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
hazelcast 1/1 Running © 17s

Real-world Kubernetes clusters can run hundreds of Pods at the same time. If you
know the name of the Pod of interest, it’s often times easier to query by name. We
would still only see a single Pod:

12 | Chapter2: Core Concepts

https://oreil.ly/I0Ckf

$ kubectl get pods hazelcast
NAME READY STATUS RESTARTS AGE
hazelcast 1/1 Running © 17s

Pod Life Cycle Phases

Because Kubernetes is a state engine with asynchronous control loops, it’s possible
that the status of the Pod doesn’t show a Running status right away when listing the
Pods. It usually takes a couple of seconds to retrieve the image and start the container.
Upon Pod creation, the object goes through several life cycle phases, as shown in

Figure 2-6.
[T N
! Unknown !
N e e e J

Figure 2-6. Pod Life cycle Phases

Understanding the implications of each phase is important as it gives you an idea
about the operational status of a Pod. For example, during the exam you may be
asked to identify a Pod with an issue and further debug the object. Table 2-2 describes
all Pod life cycle phases.

Table 2-2. Pod life cycle phases

Option Description
Pending The Pod has been accepted by the Kubernetes system, but one or more of the container images has not been
created.

Running Atleast one container is still running, or is in the process of starting or restarting.
Succeeded All containers in the Pod terminated successfully.
Failed Containers in the Pod terminated, as least one failed with an error.

Unknown The state of Pod could not be obtained.

Rendering Pod Details

The rendered table produced by the get command provides high-level information
about a Pod. But what if you needed to have a deeper look at the details? The
describe command can help:

Rendering Pod Details | 13

https://oreil.ly/Qk5Ob

$ kubectl describe pods hazelcast

Name: hazelcast
Namespace: default
Priority: 0
PriorityClassName: <none>
Node: docker-desktop/192.168.65.3
Start Time: Wed, 20 May 2020 19:35:47 -0600
Labels: app=hazelcast
env=prod
Annotations: <none>
Status: Running
IP: 10.1.0.41
Containers:
Events:

The terminal output contains the metadata information of a Pod, the containers it
runs and the event log, such as failures when the Pod was scheduled. The example
output above has been condensed to just show the metadata section. You can expect
the output to be very lengthy.

There’s a way to be more specific about the information you want to render. You can
combine the describe command with a Unix grep command. Say you wanted to
identify the image for running in the container:

$ kubectl describe pods hazelcast | grep Image:
Image: hazelcast/hazelcast

Accessing Logs of a Pod

As application developers, we know very well what to expect in the log files produced
by the application we implemented. Runtime failures may occur when operating an
application in a container. The logs command downloads the log output of a con-
tainer. The following output indicates that the Hazelcast server started up
successfully:

$ kubectl logs hazelcast

May 25, 2020 3:36:26 PM com.hazelcast.core.LifecycleService

INFO: [10.1.0.46]:5701 [dev] [4.0.1] [10.1.0.46]:5701 is STARTED
It’s very likely that more log entries will be produced as soon as the container receives
traffic from end users. You can stream the logs with the command line option -f.
This option is helpful if you want to see logs in real time.

Kubernetes tries to restart a container under certain conditions, such as if the image
cannot be resolved on the first try. Upon a container restart, youw’ll not have access to
the logs of the previous container anymore; the logs command only renders the logs

14 | Chapter2: Core Concepts

for the current container. However, you can still get back to the logs of the previous
container by adding the -p command line option. You may want to use the option to
identify the root cause that triggered a container restart.

Executing a Command in Container

There are situations that require you to log into the container and explore the file sys-
tem. Maybe you want to inspect the configuration of your application or debug the
current state of your application. You can use the exec command to open a shell in
the container to explore it interactively, as follows:

$ kubectl exec -it hazelcast -- /bin/sh
...

Notice that you do not have to provide the resource type. This command only works

for a Pod. The two dashes (- -) separate the exec command and its options from the
command you want to run inside of the container.

It's also possible to just execute a single command inside of a container. Say you
wanted to render the environment variables available to containers without having to
be logged in. Just remove the interactive flag -it and provide the relevant command
after the two dashes:

$ kubectl exec hazelcast -- env

DNS_DOMAIN=cluster

Deleting a Pod

Sooner or later you'll want to delete a Pod. During the exam, you may be asked to
remove a Pod. Or possibly, you made a configuration mistake and want to start the
question from scratch:

$ kubectl delete pod hazelcast
pod "hazelcast" deleted

Keep in mind that Kubernetes tries to delete a Pod gracefully. This means that the Pod
will try to finish active requests to the Pod to avoid unnecessary disruption to the end
user. A graceful deletion operation can take anywhere from 5-30 seconds, time you
don’t want to waste during the exam. See Chapter 1 for more information on how to
speed up the process.

An alternative way to delete a Pod is to point the delete command to the YAML
manifest you used to create it. The behavior is the same:

$ kubectl delete -f pod.yaml
pod "hazelcast" deleted

DeletingaPod | 15

Configuring Pods

The CKAD curriculum expects you to feel comfortable with editing YAML manifests
either as files or as live object representations. In this section, I want to point you to
some of the typical configuration scenarios you may face during the exam. Later
chapters will deepen your knowledge by touching on other configuration aspects.

Declaring Environment Variables

Applications need to expose a way to make their runtime behavior configurable. For
example, you may want to inject the URL to an external web service or declare the
username for a database connection. Environment variables are a common option to
provide this runtime configuration.

Avoid creating container images per environment

It might be tempting to say “hey, let’s create a container image for
any target deployment environment I need including its configura-

" tion” That’s a bad idea. One of the practices of continuous delivery
and the Twelve-Factor App principles is to only build a deployable
artifact for a commit once. In this case, the artifact is the container
image. Deviating configuration runtime behavior should be con-
trollable by injecting runtime information when instantiating the
container. You can use environment variables to control the behav-
ior as needed.

Defining environment variables in a Pod YAML manifest is relatively easy. Add or
enhance the section env of a container. Every environment variable consists of a key-
value pair, represented by the attributes name and value. Kubernetes does not enforce
or sanitize typical naming conventions for environment variable keys. It's recom-
mended to follow the standard of using upper-case letters and the underscore charac-
ter (_) to separate words.

To illustrate a set of environment variables, have a look at Example 2-3. The code
snippet describes a Pod that runs a Java-based application using the Spring Boot
framework.

Example 2-3. YAML manifest for a Pod defning environment variables

apiVersion: vi1
kind: Pod
metadata:
name: spring-boot-app
spec:
containers:

16 | Chapter2: Core Concepts

https://oreil.ly/w4_2g
https://12factor.net

- image: bmuschko/spring-boot-app:1.5.3
name: spring-boot-app
env:
- name: SPRING_PROFILES_ACTIVE
value: prod
- name: VERSION
value: '1.5.3'

The first environment variable named SPRING_PROFILES_ACTIVE defines a pointer to
a so-called profile. A profile contains environment-specific properties. Here, we are
pointing to the profile that configures the production environment. The environment
variable VERSION specifies the application version. Its value corresponds to the tag of
the image and can be exposed by the running application to display the value in the
user interface.

Defining a Command with Arguments

Many container images already define an ENTRYPOINT or CMD instruction. The com-
mand assigned to the instruction is automatically executed as part of the container
startup process. For example, the Hazelcast image we used earlier defines the instruc-
tion CMD ["/opt/hazelcast/start-hazelcast.sh"].

In a Pod definition, you can either redefine the image ENTRYPOINT and CMD instruc-
tions or assign a command to execute for the container if hasn’t been specified by the
image. You can provide this information with the help of the command and args
attributes for a container. The command attribute overrides the image’s ENTRYPOINT
instruction. The args attribute replaces the CMD instruction of an image.

Imagine you wanted to provide a command to an image that doesn’t provide one yet.
As usual there are two different approaches, imperatively and declaratively. We'll gen-
erate the YAML manifest with the help of the run command. The Pod should use the
busybox image and execute a shell command that renders the current date every 10
seconds in an infinite loop:

$ kubectl run mypod --image=busybox -o yaml --dry-run=client --restart=Never \
> pod.yaml -- /bin/sh -c "while true; do date; sleep 10; done"
You can see in the generated, but condensed pod.yaml file shown in Example 2-4 that

the command has been turned into an args attribute. Kubernetes specifies each argu-
ment on a single line.

Example 2-4. A YAML manifest containing an args attribute

apiVersion: vi1

kind: Pod

metadata:
name: mypod

ConfiguringPods | 17

spec:
containers:
- args:
- /bin/sh
- -C
- while true; do date; sleep 10; done
image: busybox
name: mypod
restartPolicy: Never

You could have achieved the same by a combination of the command and args
attributes if you were to hand-craft the YAML manifest. Example 2-5 shows the dif-
ferent approach.

Example 2-5. A YAML fle containing command and args attributes

apivVersion: vi1

kind: Pod
metadata:
name: mypod
spec:
containers:
- command: ["/bin/sh"]
args: ["-c", "while true; do date; sleep 10; done"]

image: busybox
name: mypod
restartPolicy: Never

You can quickly verify if the declared command actually does its job. First, we create
the Pod instance, then we tail the logs:

$ kubectl create -f pod.yaml
pod/mypod created

$ kubectl logs mypod -f

Fri May 29 00:49:06 UTC 2020
Fri May 29 00:49:16 UTC 2020
Fri May 29 00:49:26 UTC 2020
Fri May 29 00:49:36 UTC 2020

Understanding Namespaces

Namespaces are an API construct to avoid naming collisions and represent a scope
for object names. A good use case for namespaces is to isolate the objects by team or
responsibility. Most questions in the CKAD exam will ask you to execute the com-
mand in a specific namespace which has been set up for you. The following sections
briefly touch on the basic operations needed to deal with a namespace.

18 | Chapter2: Core Concepts

Listing Namespaces

A Kubernetes cluster starts out with a couple of initial namespaces. You can list them
with the following command:

$ kubectl get namespaces

NAME STATUS AGE
default Active 157d
kube-node-lease Active 157d
kube-public Active 157d
kube-system Active 157d

The default namespace hosts object that haven't been assigned to an explicit name-
space. Namespaces starting with the prefix kube- are not considered end user-
namespaces. They have been created by the Kubernetes system. You will not have to
interact with them as an application developer.

Creating and Using a Namespace

To create a new namespace, use the create namespace command. The following
command uses the name code-red:

$ kubectl create namespace code-red
namespace/code-red created

$ kubectl get namespace code-red
NAME STATUS AGE

code-red Active 16s

The corresponding representation as a YAML manifest would look as follows:

apiVersion: vi
kind: Namespace
metadata:

name: code-red

Once the namespace is in place, you can create objects within it. You can do so with
the command line option --namespace or its short-form -n. The following com-
mands create a new Pod in the namespace code-red and then lists the available Pods
in the namespace:

$ kubectl run pod --image=nginx --restart=Never -n code-red
pod/pod created

$ kubectl get pods -n code-red

NAME READY STATUS RESTARTS AGE

pod 1/1 Running © 13s

Creating and Using a Namespace | 19

Deleting a Namespace

Deleting a namespace has a cascading effect on the object existing in it. Deleting a
namespace will automatically delete its objects:

$ kubectl delete namespace code-red
namespace "code-red" deleted

$ kubectl get pods -n code-red

No resources found in code-red namespace.

Summary

Kubernetes represents its functionality for deploying and operating a cloud-native
application with the help of primitives. Each primitive follows a general structure: the
API version, the kind, the metadata and the desired state of the resources, also called
the spec. Upon creation or modification of the object, the Kubernetes scheduler auto-
matically tries to ensure that the actual state of the object follows the defined specifi-
cation. Every live object can be inspected, edited, and deleted.

The portion “Core Concepts” of the curriculum puts a strong emphasis on the con-
cept of a Pod. The Pod is a Kubernetes primitive responsible for running an applica-
tion in a container. Kubernetes uses Docker as its default container runtime
technology. A Pod can define one or many containers that use a container image.
Upon its creation, the container image is resolved and used to bootstrap the applica-
tion. Every Pod can be further customized with the relevant YAML configuration.

Kubectl acts as a CLI-based client to interact with the Kubernetes cluster. You can use
its commands and flags to manage Kubernetes objects.

Exam Essentials

Understand how to manage Kubernetes objects
In Kubernetes, you can create objects with the imperative or declarative
approach. The imperative approach is the most time-efficient way to create
objects. For Pods, use the command kubectl run, for any other resource use the
command kubectl create. Furthermore, practice editing live objects with
kubectl edit and know how to delete them via kubectl delete.

Know how to interact with Pods
A Pod runs an application inside of a container. You can check on the status and
the configuration of the Pod by inspecting the object with the kubectl get or
kubectl describe commands. Make yourself familiar with the life cycle phases
of a Pod to be able to quickly diagnose error conditions. The command kubectl
logs can be used to download the container log information without having to

20 | Chapter2: Core Concepts

shell into the container. Use the command kubectl exec to further explore the
container environment e.g. to check on processes or to examine files.

Advanced Pod configuration options

Sometimes you have to start with the YAML manifest of a Pod and then create
the Pod declaratively. This could be the case if you wanted to provide environ-
ment variables to the container or declare a custom command. Practice different
configuration options by copy-pasting relevant code snippets from the Kuber-
netes documentation.

Sample Exercises

Solutions to these exercises are available in Appendix A.

1.

Create a new Pod named nginx running the image nginx:1.17.10. Expose the
container port 80. The Pod should live in the namespace named ckad.

. Get the details of the Pod including its IP address.

. Create a temporary Pod that uses the busybox image to execute a wget command

inside of the container. The wget command should access the endpoint exposed
by the nginx container. You should see the HTML response body rendered in the
terminal.

Get the logs of the nginx container.

Add the environment variables DB_URL=postgresql://mydb:5432 and DB_USER
NAME=admin to the container of the nginx Pod.

Open a shell for the nginx container and inspect the contents of the current
directory ls -1.

. Create a YAML manifest for a Pod named loop that runs the busybox image in a

container. The container should run the following command: for i1 1in
{1..10}; do echo "Welcome $i1 times"; done. Create the Pod from the YAML
manifest. What’s the status of the Pod?

. Edit the Pod named loop. Change the command to run in an endless loop. Each

iteration should echo the current date.

. Inspect the events and the status of the Pod loop.
10.

Delete the namespace ckad and its Pods.

Sample Exercises | 21

About the Author

Benjamin Muschko is a software engineer, consultant, and trainer with more than 15
years of experience in the industry. He’s passionate about project automation, testing,
and continuous delivery. Ben is an author, a frequent speaker at conferences, and an
avid open source advocate. He holds the CKAD certification.

Software projects sometimes feel like climbing a mountain. In his free time, Ben loves
hiking Colorado’s 14ers and enjoys conquering long-distance trails.

Colophon

The animal on the cover of Certified Kubernetes Application Developer (CKAD) Study
Guide is a common porpoise (Phocoena phocoena). It is the smallest of the seven
species of porpoise and one of the smallest marine mammals. Adults are 4.5 to 6 feet
long and weigh between 130 and 170 pounds. They are dark gray with lightly speck-
led sides and white undersides. Females are larger than males.

The common porpoise lives in the coastal waters of the North Atlantic, North Pacific,
and Black Sea. They are also known as harbor porpoises since they inhabit fjords,
bays, estuaries, and harbors. These marine mammals eat very small schooling fish
and will hunt several hundred fish per hour throughout the day. They are usually soli-
tary hunters but will occasionally form small packs.

Porpoises use ultrasonic clicks for echolocation (for both navigation and hunting)
and social communication. A mass of adipose tissue in the skull, known as a melon,
focuses and modulates their vocalizations.

Porpoises are conscious breathers, so if they are unconscious for a long time, they
may drown. In captivity, they have been known to sleep with one side of their brain at
a time so that they can still swim and breathe consciously.

The conservation status of the common porpoise is of least concern. Many of the ani-
mals on O’Reilly covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from British Quadrupeds. The cover fonts are Gilroy Semibold and Guardian Sans.
The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

https://www.14ers.com

O'REILLY"

Learn from experts.
Become one yourself.

Books | Live online courses
Instant answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

	Cover
	Copyright
	Table of Contents
	Chapter 2. Core Concepts
	Kubernetes Primitives
	Using kubectl to Interact with the Kubernetes Cluster
	Object Management
	Imperative Approach
	Declarative Approach
	Hybrid Approach
	Which Approach to Use?
	Other Notable Commands

	Understanding Pods
	Containerization Process
	Container Concepts
	Example: Containerizing a Java-Based Application

	Creating Pods
	Listing Pods
	Pod Life Cycle Phases
	Rendering Pod Details
	Accessing Logs of a Pod
	Executing a Command in Container
	Deleting a Pod
	Configuring Pods
	Declaring Environment Variables
	Defining a Command with Arguments

	Understanding Namespaces
	Listing Namespaces
	Creating and Using a Namespace
	Deleting a Namespace
	Summary
	Exam Essentials
	Sample Exercises

	About the Author
	Colophon

