
Benjamin Muschko

Certified Kubernetes
Security Specialist
(CKS) Study Guide
In-Depth Guidance
and Practice

Free
Chapter

This excerpt contains Chapter 2. The complete book is
available on the O’Reilly Online Learning Platform and

through other retailers.

Benjamin Muschko

Certified Kubernetes Security
Specialist (CKS) Study Guide

In-Depth Guidance and Practice

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-13297-2

[LSI]

Certified Kubernetes Security Specialist (CKS) Study Guide
by Benjamin Muschko

Copyright © 2023 Automated Ascent, LLC. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (https://oreilly.com). For more information, contact our corporate/institu‐
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Michele Cronin
Production Editor: Beth Kelly
Copyeditor: Liz Wheeler
Proofreader: Amnet Systems, LLC

Indexer: Potomac Indexing, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

June 2023: First Edition

Revision History for the First Edition
2023-06-08: First Release

See https://oreilly.com/catalog/errata.csp?isbn=9781098132972 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Certified Kubernetes Security Specialist
(CKS) Study Guide, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

https://oreilly.com
https://oreilly.com/catalog/errata.csp?isbn=9781098132972

Table of Contents

2. Cluster Setup. 1
Using Network Policies to Restrict Pod-to-Pod Communication 1

Scenario: Attacker Gains Access to a Pod 2
Observing the Default Behavior 3
Denying Directional Network Traffic 5
Allowing Fine-Grained Incoming Traffic 6

Applying Kubernetes Component Security Best Practices 8
Using kube-bench 8
The kube-bench Verification Result 9
Fixing Detected Security Issues 10

Creating an Ingress with TLS Termination 12
Setting Up the Ingress Backend 13
Creating the TLS Certificate and Key 15
Creating the TLS-Typed Secret 15
Creating the Ingress 16
Calling the Ingress 18

Protecting Node Metadata and Endpoints 18
Scenario: A Compromised Pod Can Access the Metadata Server 19
Protecting Metadata Server Access with Network Policies 20

Protecting GUI Elements 21
Scenario: An Attacker Gains Access to the Dashboard Functionality 21
Installing the Kubernetes Dashboard 22
Accessing the Kubernetes Dashboard 22
Creating a User with Administration Privileges 23
Creating a User with Restricted Privileges 25
Avoiding Insecure Configuration Arguments 27

Verifying Kubernetes Platform Binaries 27
Scenario: An Attacker Injected Malicious Code into Binary 27

iii

Verifying a Binary Against Hash 28
Summary 29
Exam Essentials 30
Sample Exercises 31

iv | Table of Contents

CHAPTER 2

Cluster Setup

The first domain of the exam deals with concerns related to Kubernetes cluster setup
and configuration. In this chapter, we’ll only drill into the security-specific aspects
and not the standard responsibilities of a Kubernetes administrator.

At a high level, this chapter covers the following concepts:

• Using network policies to restrict Pod-to-Pod communication•
• Running CIS benchmark tooling to identify security risks for cluster components•
• Setting up an Ingress object with TLS support•
• Protecting node ports, API endpoints, and GUI access•
• Verifying platform binaries against their checksums•

Using Network Policies to Restrict Pod-to-Pod
Communication
For a microservice architecture to function in Kubernetes, a Pod needs to be able
to reach another Pod running on the same or on a different node without Network
Address Translation (NAT). Kubernetes assigns a unique IP address to every Pod
upon creation from the Pod CIDR range of its node. The IP address is ephemeral and
therefore cannot be considered stable over time. Every restart of a Pod leases a new
IP address. It’s recommended to use Pod-to-Service communication over Pod-to-Pod
communication so that you can rely on a consistent network interface.

The IP address assigned to a Pod is unique across all nodes and namespaces. This
is achieved by assigning a dedicated subnet to each node when registering it. When
creating a new Pod on a node, the IP address is leased from the assigned subnet. This

1

is handled by the Container Network Interface (CNI) plugin. As a result, Pods on a
node can communicate with all other Pods running on any other node of the cluster.

Network policies act similarly to firewall rules, but for Pod-to-Pod communication.
Rules can include the direction of network traffic (ingress and/or egress) for one
or many Pods within a namespace or across different namespaces, as well as their
targeted ports. For a deep-dive coverage on the basics of network policies, refer to
the book Certified Kubernetes Application Developer (CKAD) Study Guide (O’Reilly)
or the Kubernetes documentation. The CKS exam primarily focuses on restricting
cluster-level access with network policies.

Defining the rules of network policies correctly can be challenging. The page net‐
workpolicy.io provides a visual editor for network policies that renders a graphical
representation in the browser.

Scenario: Attacker Gains Access to a Pod
Say you are working for a company that operates a Kubernetes cluster with three
worker nodes. Worker node 1 currently runs two Pods as part of a microservices
architecture. Given Kubernetes default behavior for Pod-to-Pod network communi‐
cation, Pod 1 can talk to Pod 2 unrestrictedly and vice versa.

As you can see in Figure 2-1, an attacker gained access to Pod 1. Without defining
network policies, the attacker can simply talk to Pod 2 and cause additional damage.
This vulnerability isn’t restricted to a single namespace. Pods 3 and 4 can be reached
and compromised as well.

Figure 2-1. An attacker who gained access to Pod 1 has network access to other Pods

2 | Chapter 2: Cluster Setup

https://learning.oreilly.com/library/view/certified-kubernetes-application/9781492083726
https://oreil.ly/WChde
https://networkpolicy.io
https://networkpolicy.io

Observing the Default Behavior
We’ll set up three Pods to demonstrate the unrestricted Pod-to-Pod network commu‐
nication in practice. As you can see in Example 2-1, the YAML manifest defines the
Pods named backend and frontend in the namespace g04. The other Pod lives in the
default namespace. Observe the label assignment for the namespace and Pods. We
will reference them a little bit later in this chapter when defining network policies.

Example 2-1. YAML manifest for three Pods in different namespaces

apiVersion: v1
kind: Namespace
metadata:

 labels:
 app: orion
 name: g04

apiVersion: v1
kind: Pod
metadata:
 labels:
 tier: backend
 name: backend
 namespace: g04
spec:
 containers:
- image: bmuschko/nodejs-hello-world:1.0.0
name: hello
ports:
- containerPort: 3000

 restartPolicy: Never

apiVersion: v1
kind: Pod
metadata:
 labels:
 tier: frontend
 name: frontend
 namespace: g04
spec:
 containers:
- image: alpine
name: frontend
args:
- /bin/sh
- -c
- while true; do sleep 5; done;

 restartPolicy: Never

apiVersion: v1

Using Network Policies to Restrict Pod-to-Pod Communication | 3

kind: Pod
metadata:
 labels:
 tier: outside
 name: other
spec:
 containers:
- image: alpine
name: other
args:
- /bin/sh
- -c
- while true; do sleep 5; done;

 restartPolicy: Never

Start by creating the objects from the existing YAML manifest using the declarative
kubectl apply command:

$ kubectl apply -f setup.yaml
namespace/g04 created
pod/backend created
pod/frontend created
pod/other created

Let’s verify that the namespace g04 runs the correct Pods. Use the -o wide CLI option
to determine the virtual IP addresses assigned to the Pods. The backend Pod uses the
IP address 10.0.0.43, and the frontend Pod uses the IP address 10.0.0.193:

$ kubectl get pods -n g04 -o wide
NAME READY STATUS RESTARTS AGE IP NODE \
 NOMINATED NODE READINESS GATES
backend 1/1 Running 0 15s 10.0.0.43 minikube \
 <none> <none>
frontend 1/1 Running 0 15s 10.0.0.193 minikube \
 <none> <none>

The default namespace handles a single Pod:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
other 1/1 Running 0 4h45m

The frontend Pod can talk to the backend Pod as no communication restrictions
have been put in place:

$ kubectl exec frontend -it -n g04 -- /bin/sh
/ # wget --spider --timeout=1 10.0.0.43:3000
Connecting to 10.0.0.43:3000 (10.0.0.43:3000)
remote file exists
/ # exit

4 | Chapter 2: Cluster Setup

The other Pod residing in the default namespace can communicate with the back
end Pod without problems:

$ kubectl exec other -it -- /bin/sh
/ # wget --spider --timeout=1 10.0.0.43:3000
Connecting to 10.0.0.43:3000 (10.0.0.43:3000)
remote file exists
/ # exit

In the next section, we’ll talk about restricting Pod-to-Pod network communication
to a maximum level with the help of deny-all network policy rules. We’ll then open up
ingress and/or egress communication only for the kind of network communication
required for the microservices architecture to function properly.

Denying Directional Network Traffic
The best way to restrict Pod-to-Pod network traffic is with the principle of least privi‐
lege. Least privilege means that Pods should communicate with the lowest privilege
for network communication. You’d usually start by disallowing traffic in any direction
and then opening up the traffic needed by the application architecture.

The Kubernetes documentation provides a couple of helpful YAML manifest exam‐
ples. Example 2-2 shows a network policy that denies ingress traffic to all Pods in the
namespace g04.

Example 2-2. A default deny-all ingress network policy

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: default-deny-ingress
 namespace: g04
spec:
 podSelector: {}
 policyTypes:

- Ingress

Selecting all Pods is denoted by the value {} assigned to the spec.podSelector
attribute. The value attribute spec.policyTypes defines the denied direction of traf‐
fic. For incoming traffic, you can add Ingress to the array. Outgoing traffic can
be specified by the value Egress. In this particular example, we disallow all ingress
traffic. Egress traffic is still permitted.

Using Network Policies to Restrict Pod-to-Pod Communication | 5

https://oreil.ly/PZOGf

The contents of the “deny-all” network policy have been saved in the file deny-all-
ingress-network-policy.yaml. The following command creates the object from the
file:

$ kubectl apply -f deny-all-ingress-network-policy.yaml
networkpolicy.networking.k8s.io/default-deny-ingress created

Let’s see how this changed the runtime behavior for Pod-to-Pod network communi‐
cation. The frontend Pod cannot talk to the backend Pod anymore, as observed by
running the same wget command we used earlier. The network call times out after
one second, as defined by the CLI option --timeout:

$ kubectl exec frontend -it -n g04 -- /bin/sh
/ # wget --spider --timeout=1 10.0.0.43:3000
Connecting to 10.0.0.43:3000 (10.0.0.43:3000)
wget: download timed out
/ # exit

Furthermore, Pods running in a different namespace cannot connect to the backend
Pod anymore either. The following wget command makes a call from the other Pod
running in the default namespace to the IP address of the backend Pod:

$ kubectl exec other -it -- /bin/sh
/ # wget --spider --timeout=1 10.0.0.43:3000
Connecting to 10.0.0.43:3000 (10.0.0.43:3000)
wget: download timed out

This call times out as well.

Allowing Fine-Grained Incoming Traffic
Network policies are additive. To grant more permissions for network communica‐
tion, simply create another network policy with more fine-grained rules. Say we
wanted to allow ingress traffic to the backend Pod only from the frontend Pod that
lives in the same namespace. Ingress traffic from all other Pods should be denied
independently of the namespace they are running in.

Network policies heavily work with label selection to define rules. Identify the labels
of the g04 namespace and the Pod objects running in the same namespace so we can
use them in the network policy:

$ kubectl get ns g04 --show-labels
NAME STATUS AGE LABELS
g04 Active 12m app=orion,kubernetes.io/metadata.name=g04
$ kubectl get pods -n g04 --show-labels
NAME READY STATUS RESTARTS AGE LABELS
backend 1/1 Running 0 9m46s tier=backend
frontend 1/1 Running 0 9m46s tier=frontend

6 | Chapter 2: Cluster Setup

The label assignment for the namespace g04 includes the key-value pair app=orion.
The Pod backend label set includes the key-value pair tier=backend, and the front
end Pod the key-value pair tier=frontend.

Create a new network policy that allows the frontend Pod to talk to the backend Pod
only on port 3000. No other communication should be allowed. The YAML manifest
representation in Example 2-3 shows the full network policy definition.

Example 2-3. Network policy that allows ingress traffic

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: backend-ingress
 namespace: g04
spec:
 podSelector:
 matchLabels:

tier: backend
 policyTypes:
- Ingress
ingress:
- from:
- namespaceSelector:

matchLabels:
app: orion

podSelector:
matchLabels:
tier: frontend

 ports:
- protocol: TCP

port: 3000

The definition of the network policy has been stored in the file backend-ingress-
network-policy.yaml. Create the object from the file:

$ kubectl apply -f backend-ingress-network-policy.yaml
networkpolicy.networking.k8s.io/backend-ingress created

The frontend Pod can now talk to the backend Pod:

$ kubectl exec frontend -it -n g04 -- /bin/sh
/ # wget --spider --timeout=1 10.0.0.43:3000
Connecting to 10.0.0.43:3000 (10.0.0.43:3000)
remote file exists
/ # exit

Using Network Policies to Restrict Pod-to-Pod Communication | 7

Pods running outside of the g04 namespace still can’t connect to the backend Pod.
The wget command times out:

$ kubectl exec other -it -- /bin/sh
/ # wget --spider --timeout=1 10.0.0.43:3000
Connecting to 10.0.0.43:3000 (10.0.0.43:3000)
wget: download timed out

Applying Kubernetes Component Security Best Practices
Managing an on-premises Kubernetes cluster gives you full control over the config‐
uration options applied to cluster components, such as the API server, etcd, the
kubelet, and others. It’s not uncommon to simply go with the default configuration
settings used by kubeadm when creating the cluster nodes. Some of those default
settings may expose cluster components to unnecessary attack opportunities.

Hardening the security measures of a cluster is a crucial activity for any Kubernetes
administrator seeking to minimize attack vectors. You can either perform this activity
manually if you are aware of the best practices, or use an automated process.

The Center for Internet Security (CIS) is a not-for-profit organization that publishes
cybersecurity best practices. Part of their best practices portfolio is the Kubernetes
CIS Benchmark, a catalog of best practices for Kubernetes environments. You will
find a detailed list of recommended security settings for cluster components on their
web page.

CIS benchmarking for cloud provider Kubernetes environments

The Kubernetes CIS Benchmark is geared toward a self-managed
installation of Kubernetes. Cloud provider Kubernetes environ‐
ments, such as Amazon Elastic Kubernetes Service (EKS) and
Google Kubernetes Engine (GKE), provide a managed control
plane accompanied by their own command line tools. Therefore,
the security recommendations made by the Kubernetes CIS Bench‐
mark may be less fitting. Some tools, like kube-bench, discussed
next, provide verification checks specifically for cloud providers.

Using kube-bench
You can use the tool kube-bench to check Kubernetes cluster components against the
CIS Benchmark best practices in an automated fashion. Kube-bench can be executed
in a variety of ways. For example, you can install it as a platform-specific binary in
the form of an RPM or Debian file. The most convenient and direct way to run the
verification process is by running kube-bench in a Pod directly on the Kubernetes
cluster. For that purpose, create a Job object with the help of a YAML manifest
checked into the GitHub repository of the tool.

8 | Chapter 2: Cluster Setup

https://www.cisecurity.org
https://oreil.ly/CUe_D
https://oreil.ly/CUe_D
https://oreil.ly/y3mbO

Start by creating the Job from the file job-master.yaml, or job-node.yaml depend‐
ing on whether you want to inspect a control plane node or a worker node. The
following command runs the verification checks against the control plane node:

$ kubectl apply -f https://raw.githubusercontent.com/aquasecurity/kube-bench/\
main/job-master.yaml
job.batch/kube-bench-master created

Upon Job execution, the corresponding Pod running the verification process can be
identified by its name in the default namespace. The Pod’s name starts with the
prefix kube-bench, then appended with the type of the node plus a hash at the end.
The following output uses the Pod named kube-bench-master-8f6qh:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
kube-bench-master-8f6qh 0/1 Completed 0 45s

Wait until the Pod transitions into the “Completed” status to ensure that all verifica‐
tion checks have finished. You can have a look at the benchmark result by dumping
the logs of the Pod:

$ kubectl logs kube-bench-master-8f6qh

Sometimes, it may be more convenient to write the verification results to a file.
You can redirect the output of the kubectl logs command to a file, e.g., with
the command kubectl logs kube-bench-master-8f6qh > control-plane-kube-
bench-results.txt.

The kube-bench Verification Result
The produced verification result can be lengthy and detailed, but it consists of these
key elements: the type of the inspected node, the inspected components, a list of
passed checks, a list of failed checks, a list of warnings, and a high-level summary:

[INFO] 1 Control Plane Security Configuration
[INFO] 1.1 Control Plane Node Configuration Files
[PASS] 1.1.1 Ensure that the API server pod specification file permissions are \
set to 644 or more restrictive (Automated)
...
[INFO] 1.2 API Server
[WARN] 1.2.1 Ensure that the --anonymous-auth argument is set to false \
(Manual)
...
[FAIL] 1.2.6 Ensure that the --kubelet-certificate-authority argument is set \
as appropriate (Automated)

== Remediations master ==
...
1.2.1 Edit the API server pod specification file /etc/kubernetes/manifests/ \
kube-apiserver.yaml on the control plane node and set the below parameter.
--anonymous-auth=false

Applying Kubernetes Component Security Best Practices | 9

...
1.2.6 Follow the Kubernetes documentation and setup the TLS connection between
the apiserver and kubelets. Then, edit the API server pod specification file
/etc/kubernetes/manifests/kube-apiserver.yaml on the control plane node and \
set the --kubelet-certificate-authority parameter to the path to the cert \
file for the certificate authority.
--kubelet-certificate-authority=<ca-string>

...
== Summary total ==
42 checks PASS
9 checks FAIL
11 checks WARN
0 checks INFO

The inspected node, in this case the control plane node.

A passed check. Here, the file permissions of the API server configuration file.

A warning message that prompts you to manually check the value of an argu‐
ment provided to the API server executable.

A failed check. For example, the flag --kubelet-certificate-authority should
be set for the API server executable.

The remediation action to take to fix a problem. The number, e.g., 1.2.1, of
the failure or warning corresponds to the number assigned to the remediation
action.

The summary of all passed and failed checks plus warning and informational
messages.

Fixing Detected Security Issues
The list of reported warnings and failures can be a bit overwhelming at first. Keep in
mind that you do not have to fix them all at once. Some checks are merely guidelines
or prompts to verify an assigned value for a configuration. The following steps walk
you through the process of eliminating a warning message.

The configuration files of the control plane components can be found in the direc‐
tory /etc/kubernetes/manifests on the host system of the control plane node. Say
you wanted to fix the warning 1.2.12 reported by kube-bench:

[INFO] 1.2 API Server
...
[WARN] 1.2.12 Ensure that the admission control plugin AlwaysPullImages is \
set (Manual)

10 | Chapter 2: Cluster Setup

== Remediations master ==
...
1.2.12 Edit the API server pod specification file /etc/kubernetes/manifests/ \
kube-apiserver.yaml
on the control plane node and set the --enable-admission-plugins parameter \
to include AlwaysPullImages.
--enable-admission-plugins=...,AlwaysPullImages,...

As proposed by the remediation action, you are supposed to edit the configuration
file for the API server and add the value AlwaysPullImages to the list of admission
plugins. Go ahead and edit the file kube-apiserver.yaml:

$ sudo vim /etc/kubernetes/manifests/kube-apiserver.yaml

After appending the value AlwaysPullImages to the argument --enable-admission-
plugins, the result could look as follows:

apiVersion: v1
kind: Pod
metadata:
 annotations:
 kubeadm.kubernetes.io/kube-apiserver.advertise-address.endpoint: \
 192.168.56.10:6443
 creationTimestamp: null
 labels:
 component: kube-apiserver
 tier: control-plane
 name: kube-apiserver
 namespace: kube-system
spec:
 containers:
 - command:
 - kube-apiserver
 - --advertise-address=192.168.56.10
 - --allow-privileged=true
 - --authorization-mode=Node,RBAC
 - --client-ca-file=/etc/kubernetes/pki/ca.crt
 - --enable-admission-plugins=NodeRestriction,AlwaysPullImages
...

Save the changes to the file. The Pod running the API server in the kube-system
namespace will be restarted automatically. The startup process can take a couple of
seconds. Therefore, executing the following command may take a while to succeed:

$ kubectl get pods -n kube-system
NAME READY STATUS RESTARTS AGE
...
kube-apiserver-control-plane 1/1 Running 0 71m
...

Applying Kubernetes Component Security Best Practices | 11

You will need to delete the existing Job object before you can verify the changed
result:

$ kubectl delete job kube-bench-master
job.batch "kube-bench-master" deleted

The verification check 1.2.12 now reports a passed result:

$ kubectl apply -f https://raw.githubusercontent.com/aquasecurity/kube-bench/\
main/job-master.yaml
job.batch/kube-bench-master created
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
kube-bench-master-5gjdn 0/1 Completed 0 10s
$ kubectl logs kube-bench-master-5gjdn | grep 1.2.12
[PASS] 1.2.12 Ensure that the admission control plugin AlwaysPullImages is \
set (Manual)

Creating an Ingress with TLS Termination
An Ingress routes HTTP and/or HTTPS traffic from outside of the cluster to one or
many Services based on a matching URL context path. You can see its functionality in
action in Figure 2-2.

Figure 2-2. Managing external access to the Services via HTTP(S)

The Ingress has been configured to accept HTTP and HTTPS traffic from outside of
the cluster. If the caller provides the context path /app, then the traffic is routed to
Service 1. If the caller provides the context path /api, then the traffic is routed to Ser‐
vice 2. It’s important to point out that the communication typically uses unencrypted
HTTP network communication as soon as it passes the Ingress.

Given that the Ingress API resource is a part of the CKAD and CKA exam, we
are not going to discuss the basics anymore here. For a detailed discussion, refer to
the information in the Certified Kubernetes Administrator (CKA) Study Guide or the
Kubernetes documentation.

12 | Chapter 2: Cluster Setup

https://oreil.ly/cka-study-guide
https://oreil.ly/wmk2s

The role of an Ingress controller

Remember that an Ingress cannot work without an Ingress control‐
ler. The Ingress controller evaluates the collection of rules defined
by an Ingress that determine traffic routing. One example of a
production-grade Ingress controller is the F5 NGINX Ingress Con‐
troller or AKS Application Gateway Ingress Controller. You can
find other options listed in the Kubernetes documentation. If you
are using minikube, make sure to enable the Ingress add-on.

The primary focus of the CKS lies on setting up Ingress objects with TLS termination.
Configuring the Ingress for HTTPS communication relieves you from having to deal
with securing the network communication on the Service level. In this section of the
book, you will learn how to create a TLS certificate and key, how to feed the certificate
and key to a TLS-typed Secret object, and how to configure an Ingress object so that
it supports HTTPS communication.

Setting Up the Ingress Backend
In the context of an Ingress, a backend is the combination of Service name and port.
Before creating the Ingress, we’ll take care of the Service, a Deployment, and the Pods
running nginx so we can later on demonstrate the routing of HTTPS traffic to an
actual application. All of those objects are supposed to exist in the namespace t75.
Example 2-4 defines all of those resources in a single YAML manifest file setup.yaml
as a means to quickly create the Ingress backend.

Example 2-4. YAML manifest for exposing nginx through a Service

apiVersion: v1
kind: Namespace
metadata:
 name: t75

apiVersion: apps/v1
kind: Deployment
metadata:

 name: nginx-deployment
 namespace: t75
 labels:
 app: nginx
spec:
 replicas: 3
 selector:
 matchLabels:

app: nginx
 template:
 metadata:

Creating an Ingress with TLS Termination | 13

https://oreil.ly/jOo6P
https://oreil.ly/jOo6P
https://oreil.ly/ckuqf
https://oreil.ly/BXx8e
https://oreil.ly/11QAA

labels:
app: nginx

 spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80

apiVersion: v1
kind: Service
metadata:
 name: accounting-service
 namespace: t75
spec:
 selector:
 app: nginx
 ports:

- protocol: TCP
port: 80
targetPort: 80

Create the objects from the YAML file with the following command:

$ kubectl apply -f setup.yaml
namespace/t75 created
deployment.apps/nginx-deployment created
service/accounting-service created

Let’s quickly verify that the objects have been created properly, and the Pods have
transitioned into the “Running” status. Upon executing the get all command, you
should see a Deployment named nginx-deployment that controls three replicas, and
a Service named accounting-service of type ClusterIP:

$ kubectl get all -n t75
NAME READY STATUS RESTARTS AGE
pod/nginx-deployment-6595874d85-5rdrh 1/1 Running 0 108s
pod/nginx-deployment-6595874d85-jmhvh 1/1 Running 0 108s
pod/nginx-deployment-6595874d85-vtwxp 1/1 Running 0 108s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) \
 AGE
service/accounting-service ClusterIP 10.97.101.228 <none> 80/TCP \
 108s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/nginx-deployment 3/3 3 3 108s

Calling the Service endpoint from another Pod running on the same node should
result in a successful response from the nginx Pod. Here, we are using the wget
command to verify the behavior:

14 | Chapter 2: Cluster Setup

$ kubectl run tmp --image=busybox --restart=Never -it --rm \
 -- wget 10.97.101.228:80
Connecting to 10.97.101.228:80 (10.97.101.228:80)
saving to 'index.html'
index.html 100% |**| 612 0:00:00 ETA
'index.html' saved
pod "tmp" deleted

With those objects in place and functioning as expected, we can now concentrate on
creating an Ingress with TLS termination.

Creating the TLS Certificate and Key
We will need to generate a TLS certificate and key before we can create a TLS
Secret. To do this, we will use the OpenSSL command. The resulting files are named
accounting.crt and accounting.key:

$ openssl req -nodes -new -x509 -keyout accounting.key -out accounting.crt \
-subj "/CN=accounting.tls"

Generating a 2048 bit RSA private key
...........................+
..........................+
writing new private key to 'accounting.key'

$ ls
accounting.crt accounting.key

For use in production environments, you’d generate a key file and use it to obtain a
TLS certificate from a certificate authority (CA). For more information on creating a
TLS certification and key, see the OpenSSL documentation.

Creating the TLS-Typed Secret
The easiest way to create a Secret is with the help of an imperative command. This
method of creation doesn’t require you to manually base64-encode the certificate and
key values. The encoding happens automatically upon object creation. The following
command uses the Secret option tls and assigns the certificate and key file name
with the options --cert and --key:

$ kubectl create secret tls accounting-secret --cert=accounting.crt \
 --key=accounting.key -n t75
secret/accounting-secret created

Example 2-5 shows the YAML representation of a TLS Secret if you want to create the
object declaratively.

Creating an Ingress with TLS Termination | 15

https://oreil.ly/sETSb

Example 2-5. A Secret using the type kubernetes.io/tls

apiVersion: v1
kind: Secret
metadata:
 name: accounting-secret
 namespace: t75
type: kubernetes.io/tls
data:
 tls.crt: LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk...
 tls.key: LS0tLS1CRUdJTiBQUklWQVRFIEtFWS0tLS0tCk...

Make sure to assign the values for the attributes tls.crt and tls.key as single-
line, base64-encoded values. To produce the base64-encoded value, simply point
the base64 command to the file name you want to convert the contents for. The
following example base64-encoded the contents of the file accounting.crt:

$ base64 accounting.crt
LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNyakNDQ...

Creating the Ingress
You can use the imperative method to create the Ingress with the help of a one-liner
command shown in the following snippet. Crafting the value of the --rule argument
is hard to get right. You will likely have to refer to the --help option for the create
ingress command as it requires a specific expression. The information relevant to
creating the connection between Ingress object and the TLS Secret is the appended
argument tls=accounting-secret:

$ kubectl create ingress accounting-ingress \
 --rule="accounting.internal.acme.com/*=accounting-service:80, \
 tls=accounting-secret" -n t75
ingress.networking.k8s.io/accounting-ingress created

Example 2-6 shows a YAML representation of an Ingress. The attribute for defining
the TLS information is spec.tls[].

Example 2-6. A YAML manifest for defining a TLS-terminated Ingress

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: accounting-ingress
 namespace: t75
spec:
 tls:
- hosts:
- accounting.internal.acme.com
secretName: accounting-secret

16 | Chapter 2: Cluster Setup

 rules:
 - host: accounting.internal.acme.com
 http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: accounting-service
 port:
 number: 80

After creating the Ingress object with the imperative or declarative approach, you
should be able to find it in the namespace t75. As you can see in the following
output, the port 443 is listed in the “PORT” column, indicating that TLS termination
has been enabled:

$ kubectl get ingress -n t75
NAME CLASS HOSTS ADDRESS \
 PORTS AGE
accounting-ingress nginx accounting.internal.acme.com 192.168.64.91 \
 80, 443 55s

Describing the Ingress object shows that the backend could be mapped to the path /
and will route traffic to the Pod via the Service named accounting-service:

$ kubectl describe ingress accounting-ingress -n t75
Name: accounting-ingress
Labels: <none>
Namespace: t75
Address: 192.168.64.91
Ingress Class: nginx
Default backend: <default>
TLS:
 accounting-secret terminates accounting.internal.acme.com
Rules:
 Host Path Backends
 ---- ---- --------
 accounting.internal.acme.com
 / accounting-service:80 \
 (172.17.0.5:80,172.17.0.6:80,172.17.0.7:80)
Annotations: <none>
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Sync 1s (x2 over 31s) nginx-ingress-controller Scheduled for sync

Creating an Ingress with TLS Termination | 17

Calling the Ingress
To test the behavior on a local Kubernetes cluster on your machine, you need to first
find out the IP address of a node. The following command reveals the IP address in a
minikube environment:

$ kubectl get nodes -o wide
NAME STATUS ROLES AGE VERSION INTERNAL-IP \
 EXTERNAL-IP OS-IMAGE KERNEL-VERSION CONTAINER-RUNTIME
minikube Ready control-plane 3d19h v1.24.1 192.168.64.91 \
 <none> Buildroot 2021.02.12 5.10.57 docker://20.10.16

Next, you’ll need to add the IP address to the hostname mapping to your /etc/hosts
file:

$ sudo vim /etc/hosts
...
192.168.64.91 accounting.internal.acme.com

You can now send HTTPS requests to the Ingress using the assigned domain name
and receive an HTTP response code 200 in return:

$ wget -O- https://accounting.internal.acme.com --no-check-certificate
--2022-07-28 15:32:43-- https://accounting.internal.acme.com/
Resolving accounting.internal.acme.com (accounting.internal.acme.com)... \
192.168.64.91
Connecting to accounting.internal.acme.com (accounting.internal.acme.com) \
|192.168.64.91|:443... connected.
WARNING: cannot verify accounting.internal.acme.com's certificate, issued \
by ‘CN=Kubernetes Ingress Controller Fake Certificate,O=Acme Co’:
 Self-signed certificate encountered.
WARNING: no certificate subject alternative name matches

requested host name ‘accounting.internal.acme.com’.
HTTP request sent, awaiting response... 200 OK

Protecting Node Metadata and Endpoints
Kubernetes clusters expose ports used to communicate with cluster components. For
example, the API server uses the port 6443 by default to enable clients like kubectl to
talk to it when executing commands.

The Kubernetes documentation lists those ports in “Ports and Protocols”. The follow‐
ing two tables show the default port assignments per node.

Table 2-1 shows the default inbound ports on the cluster node.

18 | Chapter 2: Cluster Setup

https://oreil.ly/iN993

Table 2-1. Inbound control plane node ports

Port range Purpose
6643 Kubernetes API server

2379–2380 etcd server client API

10250 Kubelet API

10259 kube-scheduler

10257 kube-controller-manager

Many of those ports are configurable. For example, you can modify the API server
port by providing a different value with the flag --secure-port in the configura‐
tion file /etc/kubernetes/manifests/kube-apiserver.yaml, as documented for the
cluster component. For all other cluster components, please refer to their correspond‐
ing documentation.

Table 2-2 lists the default inbound ports on a worker node.

Table 2-2. Inbound worker node ports

Port range Purpose
10250 Kubelet API

30000–32767 NodePort Services

To secure the ports used by cluster components, set up firewall rules to minimize
the attack surface area. For example, you could decide not to expose the API server
to anyone outside of the intranet. Clients using kubectl would only be able to run
commands against the Kubernetes cluster if logged into the VPN, making the cluster
less vulnerable to attacks.

Cloud provider Kubernetes clusters (e.g., on AWS, Azure, or Google Cloud) expose
so-called metadata services. Metadata services are APIs that can provide sensitive
data like an authentication token for consumption from VMs or Pods without any
additional authorization. For the CKS exam, you need to be aware of those node
endpoints and cloud provider metadata services. Furthermore, you should have a
high-level understanding of how to protect them from unauthorized access.

Scenario: A Compromised Pod Can Access the Metadata Server
Figure 2-3 shows an attacker who gained access to a Pod running on a node within a
cloud provider Kubernetes cluster.

Protecting Node Metadata and Endpoints | 19

https://oreil.ly/TTzAz

Figure 2-3. An attacker who gained access to the Pod has access to metadata server

Access to the metadata server has not been restricted in any form. The attacker can
retrieve sensitive information, which could open other possibilities of intrusion.

Protecting Metadata Server Access with Network Policies
Let’s pick one of the cloud providers that exposes a metadata endpoint. In AWS, the
metadata server can be reached with the IP address 169.254.169.254, as described in
the AWS documentation. The endpoints exposed can provide access to EC2 instance
metadata. For example, you can retrieve the local IP address of an instance to manage
a connection to an external application or to contact the instance with the help of a
script. See the corresponding documentation page for calls to those endpoints made
with the curl command line tool.

To prevent any Pod in a namespace from reaching the IP address of the metadata
server, set up a network policy that allows egress traffic to all IP addresses except
169.254.169.254. Example 2-7 demonstrates a YAML manifest with such a rule set.

Example 2-7. A default deny-all egress to IP address 169.254.169.254 network policy

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: default-deny-egress-metadata-server
 namespace: a12
spec:
 podSelector: {}
 policyTypes:

- Egress
egress:
- to:
- ipBlock:

cidr: 0.0.0.0/0

20 | Chapter 2: Cluster Setup

https://oreil.ly/6DsIx
https://oreil.ly/Bwdej

except:
- 169.254.169.254/32

Once the network policy has been created, Pods in the namespace a12 should not
be able to reach the metadata endpoints anymore. For detailed examples that use the
endpoints via curl, see the relevant AWS documentation.

Protecting GUI Elements
The kubectl tool isn’t the only user interface (UI) for managing a cluster. While
kubectl allows for fine-grained operations, most organizations prefer a more conve‐
nient graphical user interface (GUI) for managing the objects of a cluster. You can
choose from a variety of options. The Kubernetes Dashboard is a free, web-based
application. Other GUI dashboards for Kubernetes like Portainer go beyond the
basic functionality by adding tracing of events or visualizations of hardware resource
consumption. In this section, we’ll focus on the Kubernetes Dashboard as it is easy to
install and configure.

Scenario: An Attacker Gains Access to the Dashboard Functionality
The Kubernetes Dashboard runs as a Pod inside of the cluster. Installing the Dash‐
board also creates a Service of type ClusterIP that only allows access to the endpoint
from within the cluster. To make the Dashboard accessible to end users, you’d have to
expose the Service outside of the cluster. For example, you could switch to a NodePort
Service type or stand up an Ingress. Figure 2-4 illustrates the high-level architecture
of deploying and accessing the Dashboard.

Figure 2-4. An attacker who gained access to the Dashboard

As soon as you expose the Dashboard to the outside world, attackers can potentially
gain access to it. Without the right security settings, objects can be deleted, modi‐
fied, or used for malicious purposes. The most prominent victim of such an attack
was Tesla, which in 2018 fell prey to hackers who gained access to its unprotected
Dashboard to mine cryptocurrencies. Since then, newer versions of the Dashboard
changed default settings to make it more secure from the get-go.

Protecting GUI Elements | 21

https://oreil.ly/fQ07b
https://oreil.ly/ABDQo
https://oreil.ly/i_FJv

Installing the Kubernetes Dashboard
Installing the Kubernetes Dashboard is straightforward. You can create the relevant
objects with the help of the YAML manifest available in the project’s GitHub reposi‐
tory. The following command installs all necessary objects:

$ kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/\
v2.6.0/aio/deploy/recommended.yaml

Rendering metrics in Dashboard

You may also want to install the metrics server if you are interested
in inspecting resource consumption metrics as part of the Dash‐
board functionality.

You can find the objects created by the manifest in the kubernetes-dashboard name‐
space. Among them are Deployments, Pods, and Services. The following command
lists all of them:

$ kubectl get deployments,pods,services -n kubernetes-dashboard
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/dashboard-metrics-scraper 1/1 1 1 11m
deployment.apps/kubernetes-dashboard 1/1 1 1 11m

NAME READY STATUS RESTARTS AGE
pod/dashboard-metrics-scraper-78dbd9dbf5-f8z4x 1/1 Running 0 11m
pod/kubernetes-dashboard-5fd5574d9f-ns7nl 1/1 Running 0 11m

NAME TYPE CLUSTER-IP EXTERNAL-IP \
 PORT(S) AGE
service/dashboard-metrics-scraper ClusterIP 10.98.6.37 <none> \
 8000/TCP 11m
service/kubernetes-dashboard ClusterIP 10.102.234.158 <none> \
 80/TCP 11m

Accessing the Kubernetes Dashboard
The kubectl proxy command can help with temporarily creating a proxy that
allows you to open the Dashboard in a browser. This functionality is only meant for
troubleshooting purposes and is not geared toward production environments. You
can find information about the proxy command in the documentation:

$ kubectl proxy
Starting to serve on 127.0.0.1:8001

Open the browser with the URL http://localhost:8001/api/v1/namespaces/kubernetes-
dashboard/services/https:kubernetes-dashboard:/proxy. The Dashboard will ask you to
provide an authentication method and credentials. The recommended way to config‐
ure the Dashboard is through bearer tokens.

22 | Chapter 2: Cluster Setup

https://oreil.ly/3Rtkl
https://oreil.ly/gGsqX
http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/proxy
http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/proxy

Creating a User with Administration Privileges
Before you can authenticate in the login screen, you need to create a ServiceAccount
and ClusterRoleBinding object that grant admin permissions. Start by creating the
file admin-user-serviceaccount.yaml and populate it with the contents shown in
Example 2-8.

Example 2-8. Service account for admin permissions

apiVersion: v1
kind: ServiceAccount
metadata:

 name: admin-user
 namespace: kubernetes-dashboard

Next, store the contents of Example 2-9 in the file admin-user-clusterrole
binding.yaml to map the ClusterRole named cluster-admin to the ServiceAccount.

Example 2-9. ClusterRoleBinding for admin permissions

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: admin-user
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-admin
subjects:
- kind: ServiceAccount
name: admin-user
namespace: kubernetes-dashboard

Create both objects with the following declarative command:

$ kubectl create -f admin-user-serviceaccount.yaml
serviceaccount/admin-user created
$ kubectl create -f admin-user-clusterrolebinding.yaml
clusterrolebinding.rbac.authorization.k8s.io/admin-user created

You can now create the bearer token of the admin user with the following command.
The command will generate a token for the provided ServiceAccount object and
render it on the console:

$ kubectl create token admin-user -n kubernetes-dashboard
eyJhbGciOiJSUzI1NiIsImtpZCI6...

Protecting GUI Elements | 23

Expiration of a service account token

By default, this token will expire after 24 hours. That means that
the token object will be deleted automatically once the “time to
live” (TTL) has passed. You can change the TTL of a token by
providing the command line option --ttl. For example, a value of
40h will expire the token after 40 hours. A value of 0 indicates that
the token should never expire.

Copy the output of the command and paste it into the “Enter token” field of the login
screen, as shown in Figure 2-5.

Figure 2-5. Usage of the token in the Dashboard login screen

Pressing the “Sign in” button will bring you to the Dashboard shown in Figure 2-6.

Figure 2-6. T he Dashboard view of Pods in a specific namespace

You can now manage end user and cluster objects without any restrictions.

24 | Chapter 2: Cluster Setup

Creating a User with Restricted Privileges
In the previous section, you learned how to create a user with cluster-wide admin‐
istrative permissions. Most users of the Dashboard only need a restricted set of per‐
missions, though. For example, developers implementing and operating cloud-native
applications will likely only need a subset of administrative permissions to perform
their tasks on a Kubernetes cluster. Creating a user for the Dashboard with restricted
privileges consists of a three-step approach:

1. Create a ServiceAccount object.1.
2. Create a ClusterRole object that defines the permissions.2.
3. Create a ClusterRoleBinding that maps the ClusterRole to the ServiceAccount.3.

As you can see, the process is very similar to the one we went through for the admin
user. Step 2 is new, as we need to be specific about which permissions we want to
grant. The YAML manifests that follow will model a user working as a developer
that should only be allowed read-only permissions (e.g., getting, listing, and watching
resources).

Start by creating the file restricted-user-serviceaccount.yaml and populate it
with the contents shown in Example 2-10.

Example 2-10. Service account for restricted permissions

apiVersion: v1
kind: ServiceAccount
metadata:

 name: developer-user
 namespace: kubernetes-dashboard

The ClusterRole in Example 2-11 only allows getting, listing, and watching resources.
All other operations are not permitted. Store the contents in the file restricted-
user-clusterrole.yaml.

Example 2-11. ClusterRole for restricted permissions

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 annotations:
 rbac.authorization.kubernetes.io/autoupdate: "true"
 name: cluster-developer
rules:
- apiGroups:
- '*'
resources:

Protecting GUI Elements | 25

- '*'
verbs:
- get
- list
- watch

- nonResourceURLs:
- '*'
verbs:
- get
- list
- watch

Last, map the ServiceAccount to the ClusterRole in the file restricted-user-
clusterrolebinding.yaml, as shown in Example 2-12.

Example 2-12. ClusterRoleBinding for restricted permissions

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: developer-user
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-developer
subjects:
- kind: ServiceAccount
name: developer-user
namespace: kubernetes-dashboard

Create all objects with the following declarative command:

$ kubectl create -f restricted-user-serviceaccount.yaml
serviceaccount/restricted-user created
$ kubectl create -f restricted-user-clusterrole.yaml
clusterrole.rbac.authorization.k8s.io/cluster-developer created
$ kubectl create -f restricted-user-clusterrolebinding.yaml
clusterrolebinding.rbac.authorization.k8s.io/developer-user created

Generate the bearer token of the restricted user with the following command:

$ kubectl create token developer-user -n kubernetes-dashboard
eyJhbGciOiJSUzI1NiIsImtpZCI6...

Operations that are not allowed for the logged-in user will not be rendered as dis‐
abled options in the GUI. You can still select the option; however, an error message
is rendered. Figure 2-7 illustrates the behavior of the Dashboard if you try to delete a
Pod via the user that doesn’t have the permissions to perform the operation.

26 | Chapter 2: Cluster Setup

Figure 2-7. An error message rendered when trying to invoke a permitted operation

Avoiding Insecure Configuration Arguments
Securing the Dashboard in production environments involves the usage of execution
arguments necessary for properly configuring authentication and authorization. By
default, login functionality is enabled and the HTTPS endpoint will be exposed on
port 8443. You can provide TLS certificates with the --tls-cert-file and --tls-
cert-key command line options if you don’t want them to be auto-generated.

Avoid setting the command line arguments --insecure-port to expose an HTTP
endpoint and --enable-insecure-login to enable serving the login page over HTTP
instead of HTTPS. Furthermore, make sure you don’t use the option --enable-skip-
login as it would allow circumventing an authentication method by simply clicking a
Skip button in the login screen.

Verifying Kubernetes Platform Binaries
The Kubernetes project publishes client and server binaries with every release. The
client binary refers to the executable kubectl. Server binaries include kubeadm, as
well as the executable for the API server, the scheduler, and the kubelet. You can find
those files under the “tags” sections of the Kubernetes GitHub repository or on the
release page at https://dl.k8s.io.

Scenario: An Attacker Injected Malicious Code into Binary
The executables kubectl and kubeadm are essential for interacting with Kubernetes.
kubectl lets you run commands against the API server, e.g., for managing objects.
kubeadm is necessary for upgrading cluster nodes from one version to another. Say
you are in the process of upgrading the cluster version from 1.23 to 1.24. As part

Verifying Kubernetes Platform Binaries | 27

https://oreil.ly/gS1hE
https://oreil.ly/gS1hE
https://oreil.ly/vHpAV
https://dl.k8s.io
https://oreil.ly/hTJ57

of the process, you will need to upgrade the kubeadm binary as well. The official
upgrade documentation is very specific about what commands to use for upgrading
the binary.

Say an attacker managed to modify the kubeadm executable for version 1.24 and
coaxed you into thinking that you need to download that very binary from a location
where the malicious binary was placed. As shown in Figure 2-8, you’d expose yourself
to running malicious code every time you invoke the modified kubeadm executable.
For example, you may be sending credentials to a server outside of your cluster,
which would open new ways to infiltrate your Kubernetes environment.

Figure 2-8. An attacker who injected malicious code into a binary

Verifying a Binary Against Hash
You can verify the validity of a binary with the help of a hash code like MD5 or SHA.
Kubernetes publishes SHA256 hash codes for each binary. You should run through a
hash validation for individual binaries before using them for the first time. Should the
generated hash code not match with the one you downloaded, then there’s something
off with the binary. The binary may have been modified by a third party or you didn’t
use the hash code for the correct binary type or version.

You can download the corresponding hash code for a binary from https://dl.k8s.io.
The full URL for a hash code reflects the version, operating system, and architecture
of the binary. The following list shows example URLs for platform binaries compati‐
ble with Linux AMD64:

• kubectl: https://dl.k8s.io/v1.26.1/bin/linux/amd64/kubectl.sha256•

28 | Chapter 2: Cluster Setup

https://dl.k8s.io
https://dl.k8s.io/v1.26.1/bin/linux/amd64/kubectl.sha256

• kubeadm: https://dl.k8s.io/v1.26.1/bin/linux/amd64/kubeadm.sha256•
• kubelet: https://dl.k8s.io/v1.26.1/bin/linux/amd64/kubelet.sha256•
• kube-apiserver: https://dl.k8s.io/v1.26.1/bin/linux/amd64/kube-apiserver.sha256•

You’ll have to use an operating system-specific hash code validation tool to check the
validity of a binary. You may have to install the tool if you do not have it available on
your machine yet. The following commands show the usage of the tool for different
operating systems, as explained in the Kubernetes documentation:

• Linux: echo "$(cat kubectl.sha256) kubectl" | sha256sum --check•
• MacOSX: echo "$(cat kubectl.sha256) kubectl" | shasum -a 256 --check•
• Windows with Powershell: $($(CertUtil -hashfile .\kubectl.exe SHA256)•
[1] -replace " ", "") -eq $(type .\kubectl.exe.sha256)

The following commands demonstrate downloading the kubeadm binary for version
1.26.1 and its corresponding SHA256 hash file:

$ curl -LO "https://dl.k8s.io/v1.26.1/bin/linux/amd64/kubeadm"
$ curl -LO "https://dl.k8s.io/v1.26.1/bin/linux/amd64/kubeadm.sha256"

The validation tool shasum can verify if the checksum matches:

$ echo "$(cat kubeadm.sha256) kubeadm" | shasum -a 256 --check
kubeadm: OK

The previous command returned with an “OK” message. The binary file wasn’t
tampered with. Any other message indicates a potential security risk when executing
the binary.

Summary
The domain “cluster setup” dials in on security aspects relevant to setting up a Kuber‐
netes cluster. Even though you might be creating a cluster from scratch with kubeadm,
that doesn’t mean you are necessarily following best practices. Using kube-bench to
detect potential security risks is a good start. Fix the issues reported on by the tool
one by one. You may also want to check client and server binaries against their check‐
sums to ensure that they haven’t been modified by an attacker. Some organizations
use a Dashboard to manage the cluster and its objects. Ensure that authentication and
authorization for the Dashboard restrict access to a small subset of stakeholders.

An important security aspect is network communication. Pod-to-Pod communica‐
tion is unrestricted by default. Have a close look at your application architecture
running inside of Kubernetes. Only allow directional network traffic from and to
Pods to fulfill the requirements of your architecture. Deny all other network traffic.
When exposing the application outside of the cluster, make sure that Ingress objects

Summary | 29

https://dl.k8s.io/v1.26.1/bin/linux/amd64/kubeadm.sha256
https://dl.k8s.io/v1.26.1/bin/linux/amd64/kubelet.sha256
https://dl.k8s.io/v1.26.1/bin/linux/amd64/kube-apiserver.sha256
https://oreil.ly/2FmVm

have been configured with TLS termination. This will ensure that the data is encryp‐
ted both ways so that attackers cannot observe sensitive information like passwords
sent between a client and the Kubernetes cluster.

Exam Essentials
Understand the purpose and effects of network policies

By default, Pod-to-Pod communication is unrestricted. Instantiate a default deny
rule to restrict Pod-to-Pod network traffic with the principle of least privilege.
The attribute spec.podSelector of a network policy selects the target Pod the
rules apply to based on label selection. The ingress and egress rules define Pods,
namespaces, IP addresses, and ports for allowing incoming and outgoing traffic.
Network policies can be aggregated. A default deny rule may disallow ingress
and/or egress traffic. An additional network policy can open up those rules with
a more fine-grained definition.

Practice the use of kube-bench to detect cluster component vulnerabilities
The Kubernetes CIS Benchmark is a set of best practices for recommended
security settings in a production Kubernetes environment. You can automate
the process of detecting security risks with the help of the tool kube-bench.
The generated report from running kube-bench describes detailed remediation
actions to fix a detected issue. Learn how to interpret the results and how to
mitigate the issue.

Know how to configure Ingress with TLS termination
An Ingress can be configured to send and receive encrypted data by exposing
an HTTPS endpoint. For this to work, you need to create a TLS Secret object
and assign it a TLS certificate and key. The Secret can then be consumed by the
Ingress using the attribute spec.tls[].

Know how to configure GUI elements for secure access
GUI elements, such as the Kubernetes Dashboard, provide a convenient way to
manage objects. Attackers can cause harm to your cluster if the application isn’t
protected from unauthorized access. For the exam, you need to know how to
properly set up RBAC for specific stakeholders. Moreover, you are expected to
have a rough understanding of security-related command line arguments. Prac‐
tice the installation process for the Dashboard, learn how to tweak its command
line arguments, and understand the effects of setting permissions for different
users.

Know how to detect modified platform binaries
Platform binaries like kubectl and kubeadm can be verified against their cor‐
responding hash code. Know where to find the hash file and how to use a
validation tool to identify if the binary has been tempered with.

30 | Chapter 2: Cluster Setup

Sample Exercises
Solutions to these exercises are available in the Appendix.

1. Create a network policy that denies egress traffic to any domain outside of the1.
cluster. The network policy applies to Pods with the label app=backend and
also allows egress traffic for port 53 for UDP and TCP to Pods in any other
namespace.

2. Create a Pod named allowed that runs the busybox:1.36.0 image on port 802.
and assign it the label app=frontend. Make a curl call to http://google.com.
The network call should be allowed, as the network policy doesn’t apply to the
Pod.

3. Create another Pod named denied that runs the busybox:1.36.0 image on port3.
80 and assign it the label app=backend. Make a curl call to http://google.com.
The network call should be blocked.

4. Install the Kubernetes Dashboard or make sure that it is already installed. In the4.
namespace kubernetes-dashboard, create a ServiceAccount named observer-
user. Moreover, create the corresponding ClusterRole and ClusterRoleBinding.
The ServiceAccount should only be allowed to view Deployments. All other
operations should be denied. As an example, create the Deployment named
deploy in the default namespace with the following command: kubectl create
deployment deploy --image=nginx --replicas=3.

5. Create a token for the ServiceAccount named observer-user that will never5.
expire. Log into the Dashboard using the token. Ensure that only Deployments
can be viewed and not any other type of resource.

6. Download the binary file of the API server with version 1.26.1 on Linux AMD64.6.
Download the SH256 checksum file for the API-server executable of version
1.23.1. Run the OS-specific verification tool and observe the result.

Sample Exercises | 31

About the Author
Benjamin Muschko is a software engineer, consultant, and trainer with more than 20
years of experience in the industry. He’s passionate about project automation, testing,
and continuous delivery. Ben is an author, a frequent speaker at conferences, and an
avid open source advocate. He holds the CKAD, CKA, and CKS certifications and is a
CNCF Ambassador Spring 2023.

Software projects sometimes feel like climbing a mountain. In his free time, Ben loves
hiking Colorado’s 14ers and enjoys conquering long-distance trails.

Colophon
The animal on the cover of Certified Kubernetes Security Specialist (CKS) Study Guide
is a domestic goose. These birds have been selectively bred from wild greylag (Anser
anse) and swan geese (Anser cygnoides domesticus). They have been introduced to
every continent except Antarctica. Archaeological evidence shows the geese have
been domesticated since at least 4,000 years ago.

Wild geese range in size from 7 to 9 pounds, whereas domestic geese have been bred
for size and can weigh up to 22 pounds. The distribution of their fat deposits gives the
domestic goose a more upright posture compared to the horizontal posture of their
wild ancestors. Their larger size also makes them less likely to fly, although the birds
are capable of some flight.

Historically, geese have been domesticated for use of their meat, eggs, and feathers.
In more recent times, geese have been kept as backyard pets or even for yard mainte‐
nance since they eat weeds and leaves. Due to the loud and aggressive nature of geese,
they have also been used to safeguard property, since they will make a lot of noise if
they perceive a threat or an intruder.

Domestic animals are not assessed by the IUCN. Many of the animals on O’Reilly
covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery. The cover fonts are Gilroy Semibold
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

https://www.14ers.com

Learn from experts.
Become one yourself.
Books | Live online courses
Instant answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

23
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. 1
75

 7
x9

.19
75

	Cover
	Copyright
	Table of Contents
	Chapter 2. Cluster Setup
	Using Network Policies to Restrict Pod-to-Pod Communication
	Scenario: Attacker Gains Access to a Pod
	Observing the Default Behavior
	Denying Directional Network Traffic
	Allowing Fine-Grained Incoming Traffic

	Applying Kubernetes Component Security Best Practices
	Using kube-bench
	The kube-bench Verification Result
	Fixing Detected Security Issues

	Creating an Ingress with TLS Termination
	Setting Up the Ingress Backend
	Creating the TLS Certificate and Key
	Creating the TLS-Typed Secret
	Creating the Ingress
	Calling the Ingress

	Protecting Node Metadata and Endpoints
	Scenario: A Compromised Pod Can Access the Metadata Server
	Protecting Metadata Server Access with Network Policies

	Protecting GUI Elements
	Scenario: An Attacker Gains Access to the Dashboard Functionality
	Installing the Kubernetes Dashboard
	Accessing the Kubernetes Dashboard
	Creating a User with Administration Privileges
	Creating a User with Restricted Privileges
	Avoiding Insecure Configuration Arguments

	Verifying Kubernetes Platform Binaries
	Scenario: An Attacker Injected Malicious Code into Binary
	Verifying a Binary Against Hash

	Summary
	Exam Essentials
	Sample Exercises

	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

